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The main goal of our research over the years has been the
development of catalytic reactions for the selective oxidation
of olefins. These endeavors led recently to a highly efficient
olefin epoxidation process.1 This new method is similar to the
earlier Herrmann epoxidation system2a-d in that both use
methyltrioxorhenium (MTO) as the catalyst source and hydrogen
peroxide as the oxidant. The crucial difference in the new
procedure is the requirement for pyridine ligands but the solvent
switch (from tert-butyl alcohol2b to methylene chloride1) also
greatly enhances the effectiveness of the pyridine-modified
rhenium catalyst. We report here on further improvements in
this epoxidation catalysis, the most significant being replacement
of the organometallic rhenium species (e.g., MTO) by cheaper
and more stable inorganic rhenium oxides (e.g., Re2O7, ReO3-
(OH), and ReO3).
Among the known organometallic oxorhenium (VII) species

(R-ReO3) capable of catalyzing olefin epoxidation, MTO ap-
pears to be the most stable with respect to oxidative and/or
hydrolytic removal of the alkyl group (Vide infra).3 Hence, cata-
lyst modification by variation of the R-substituent on the rhen-
ium center was not rewarding despite extensive efforts in the
Herrmann laboratory.2a-d,4 In addition, R-ReO3 compounds,
including MTO, are quite expensive.5 These factors provided
the incentive to seek water-free epoxidation conditions which
would hopefully extend the lifetime of the MTO catalyst. This
goal and much more was accomplished by simply replacing
aqueous H2O2 with bis(trimethylsilyl)peroxide (BTSP)6-8 as an
oxygen atom source (eq 1).

In addition to MTO, readily available inorganic rhenium
oxides (e.g., Re2O7, ReO3(OH), and ReO3) were also found to

exhibit high catalytic activity. Table 1 defines the scope of
this new process with representative substrates including fairly
unreactive olefins and/or progenitors of sensitive epoxides.9,10

With the present protocol, terminal olefins, problematic in the
original procedure,1a can be efficiently converted into the
corresponding epoxides. The work-up procedure simply in-
volves destruction of the traces of H2O2 with manganese dioxide
and evaporation of the hexamethyldisiloxane.10

We found that when water (1 equiv with respect to the olefin)
is intentionally added at the beginning of the MTO-catalyzed
epoxidation ofcis-4-octene, BTSP is hydrolyzed within 10 min
(as determined by GC), and poor conversions are observed
presumably due to the sensitivity of the generated epoxidizing
species to excess water (Vide infra). In addition, a significant
amount of the diol, resulting from hydrolytic ring-opening of
the epoxide, is formed. At the other extreme, efforts to remove
all traces of water by running the process in the presence of 4
Å molecular sieves almost stopped the epoxidation catalysis.
Control experiments demonstrated that MTO is not absorbed
or inactivated by the molecular sieves under these conditions.
Similarly, very sluggish epoxidation is observed when Re2O7
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is used as a catalyst for the epoxidation of 1-decene under anhy-
drous conditions (ca. 7% conversion after 2.5 h). The reaction
is dramatically accelerated upon addition of 5 mol % water.
On the basis of these observations, there appears to be a role
for a trace of water or similar protic species (e.g., CH3OH is
also effective) to enable rapid turnover of the catalytic cycle.11

The scenario shown in Scheme 1 indicates the hydrolytic
generation of free H2O2 from BTSP.
Thus, intrinsic “slow addition” of hydrogen peroxide to the

oxorhenium precursor is managed by the “proton dependent”
cycle (Scheme 1) which accomplishes transfer of the peroxo
group from Si to Re. In contrast, it is very difficult to exercise
such control in the H2O2 (aqueous or anhydrous) MTO-catalyzed
epoxidation processes; for example, slow addition of H2O2 does
not help in achieving higher conversions due to faster MTO
decomposition at lower H2O2 concentrations.12

Worthy of note, hydrolysis of BTSP to H2O2 (Scheme 1) is
the simplest of many scenarios which could explain the
requirement for protic species. In a more general way, the need
for a proton source is accommodated in Scheme 2. Here, a

regenerable XOH species helps in ferrying the peroxogroup from
silicon to rhenium.11

In accord with the previous observations, additives such as
pyridines serve to prevent sensitive epoxide ring-opening by
buffering the highly acidic rhenium species.1 Notably, com-
pared to the original system, the amount of ligand necessary to
achieve the desired protection is now decreased from 12 to
0.5-1 mol % in both MTO and Re2O7-catalyzed epoxidations.13

In some instances MTO loadings can be lowered to 0.25 mol
% without affecting conversionssa manifestation of prolonged
catalyst lifetime under the present conditions.
The use of Re2O7, ReO3(OH), and ReO3 as catalyst precursors

is a particularly important feature of the present protocol.
Catalytic activities of these inorganic rhenium species for
epoxidation with H2O2 were known to be very poor.14 Gener-
ally, the high acidity of these systems does not allow epoxides
to be isolated except in special cases such ascis-cyclooctene
(which yields an epoxide which is particularly resistant to acid-
catalyzed ring opening).14e In the present system, Re oxides
are comparable and in some cases superior to MTO especially
for the epoxidation of terminal olefins and dienes. The cost of
the process can be significantly reduced by using these less-
expensive oxorhenium catalysts in combination with BTSP
which is now more available through improved preparations.6,15

We stress, however, that despite its great thermal stability BTSP
is subject to facile hydrolysis in the presence of water and acids
which results in formation of hazardous 100% H2O2.8

In summary, conditions were found under which simple
inorganic oxorhenium species act, for the first time, as efficient
olefin epoxidation catalysts. It appears that the hydrolytic
stability of MTO has been the sole reason for its superiority
over other rhenium oxides for epoxidation catalysis. In addition,
use of BTSP, which can be easily and economically prepared
on a large scale, leads to one of the simplest epoxidation
processes imaginable.
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Table 1. Epoxidation of Olefins with Bis(trimethylsilyl) Peroxide
(BTSP) Catalyzed by High-Valent Oxorhenium Derivatives

Scheme 1

Scheme 2
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